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Noisy Lévy walk analog of two-dimensional DNA walks for chromosomes of S. cerevisiae
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The DNA sequences of all the chromosomes ofSaccharomyces cerevisiaeare mapped onto ad52 space.
The resulting patterns are interpreted as a two-dimensional walk. Their mean square displacement shows a
superdiffusive behavior. We address the question if this behavior can be understood in terms of a random walk
model. We found that it can be modeled as a superposition of a Le´vy walk and white noise.
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There has been interest in the physics community
studying DNA sequences from a physical or mathemat
point of view. The findings of some recent works sugg
that the sequence of base pairs or nucleotides in DNA
plays power-law correlations@1,2# and several controversia
points have been discussed in recent years. Most of th
works are based on a one-dimensional mapping of the
quence. Here we study a two-dimensional mapping that
be described immediately below.

In particular, in this work we analyze the two-dimension
mapping of DNA sequences of the organismSaccharomyces
cerevisiae~S.c.! ~baker’s yeast!, the first eukaryote whose
complete genome has been sequenced@3#. This provides us
with several very large sequences corresponding to the s
organism. Such sequences consist of a succession of
symbols:A ~adenine!, G ~guanine!, T ~thymine! andC ~cy-
tosine!. Typically, the frequency ofA and of T is around
0.30 and that ofG and C is about 0.20. The frequency o
bothA1G ~purines! andC1T ~pyrimidines! is very close to
0.5. We will envisage these sequences as realizations
stochastic process. For its analysis, we introduce a map
into a two-dimensional walk. With eachC (G) symbol we
associate one step in the positive~negative! direction along
the verticaly axis. With eachT (A) symbol we associate on
step to the right~left! along the horizontalx axis. In this way
we obtain a roughly unbiased walk. A typical resulting p
tern is displayed by chromosomeII ; see Fig. 1.

Among the many quantities useful to characterize a wa
the mean square displacement~MSD! is one of the most
important, as it is closely related to the correlations@4#. For
a standard random walk~RW!, the MSD^r2(s)& is a linear
function of the number of stepss: ^r2(s)&52dDs. The pro-
portionality constant 2dD ~whered is the dimension of the
space! defines the diffusion coefficientD. This purely linear
behavior is an immediate consequence of the fact that a
is a sum of identically distributedindependentrandom vari-
ables: The total displacement afters stepsr (s) is the sum of

*Present address: Max-Plank-Institut fu¨r Physik komplexer Sys-
teme, Nöthnitzer Strasse 38, 01187 Dresden, Germany.
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s single displacements, each equally distributed with va
ances2. Then, if there is no bias, the MSD corresponds
the variance of the whole displacement afters steps. As the
variance of a sum of independent random variables is
sum of their variances, we get a linear dependence os.
Deviations from the pure linearity is characteristic of corr
lations between steps. These correlations can be so stron
so long ranged that even for the asymptoticss→` a linear
regime is never reached. This lack of linearity makes it i
possible to define a diffusion coefficient and one speaks
anomalous diffusion, in most of the cases characterized by
power law^r2(s)&;sa. If 0,a,1 one speaks ofsubdiffu-
sion and the case 1,a is calledsuperdiffusionor enhanced
diffusion. While subdiffusion is typical for transport o
charge carriers in disordered media and amorphous mate
@5#, enhanced diffusion is characteristic in turbulent transp
@6,7#, chaotic@7–10#, polymer@13#, and biological@14# sys-
tems, and generalized statistical thermodynamics@15#.

The MSD of a RW^r2(s)& is understood as an averag
over many realizations of the walk, each one performed
der the same conditions. On the other hand, for DNA

FIG. 1. DNA walk corresponding to the chromosomeII of S.
cerevisiae.
914 © 1998 The American Physical Society
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quences the equivalent quantity is the mean square devia
~or mean square fluctuation! of the walk @1,4#. This is de-
fined as

F2~s!5^Dr2&2^Dr &2, ~1!

whereDr5r (s01s)2r (s0) is the difference in position be
tween the walker at steps and the walker at the~initial! step
s0 and the averages are taken over initial positionss0.

In Fig. 2 the mean square fluctuationF2(s) of the DNA
walks corresponding to the 16 chromosomes ofS.c.is shown
as a function of the step numbers in a log10-log10 plot. It is
evident that the walk is superdiffusive. Two superdiffusi
regimes seem to appear: at short and at long distances,
a transition ats;102. Moreover, ats;104 there seems to
occur a transition to a linear regime, following which, f
some chromosomes, a negative slope appears.

In this work we will consider the problem of finding
RW model with a MSD similar to this DNA walk. That is
we address the question whether there exists a simple
analog whose MSD̂r2(s)& behaves similarly toF2(s). As
explained above, we could think of a random walk with co
related steps. Instead of this, we choose a simpler model
consists of a renormalized walk. A single step of the ren
malized walk corresponds tos ~now a random variable! steps
of the original walk. Then the renormalized step displa
ment~corresponding to the sum ofs single displacements o
the original walk! will be a random variabler correlated with
s. Therefore, their joint probability distributionc(r ,s) does
not factorize~otherwise, if the variance of each renormaliz
step is finite, we would obtain pure diffusion!.

The coupled scheme that we propose to investigate
the following joint probability distribution for each renor
malized single-step displacement:

c~r ,s!; r 212g d~r 2s!. ~2!

FIG. 2. Mean square fluctuationF2(s) (log102 log10 plot! for
the 16 chromosomes ofS.c.As a reference, the dashed line corr
sponds to the pure linear behaviorF2(s)5s.
on
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-
at

r-

-

as

Here r is the length of the displacement,r 5ur u5Ax21y2,
while the direction of each displacement~the angle of the
vectorr ) is uniformly distributed in@0,2p). We will call this
a Lévy walk ~LW! model. The MSD can be computed~see
the Appendix! and we have

^r2~s!&;H s2 if 0 ,g,1

s32g if 1 ,g,2

s if 2 ,g.

~3!

As a first example let us take chromosomeII of S.c.From
Fig. 2 we can measure the corresponding slope, that is,
exponent 32g in Eq. ~3!. We get 32g51.463. Then, with
g51.537, we simulate a walk with the here propos
coupled transition probability~2!. In Fig. 3 we show the
MSD ^r2(s)& obtained from simulations in comparison wit
the mean square fluctuationF2(s) of this chromosome.

We see that only the exponent ofF2(s) at large distances
can be reproduced bŷr2(s)&. In order to account for the
whole range of distances, we have found that it is neces
to incorporate a noisy component into the model. This c
easily be achieved in the following way:

c~r ,s!;pr212g d~r 2s!1~12p! d~r 21!d~s21!.
~4!

The first term, weighted with probabilityp, corresponds to
the already mentioned coupled distribution~2!. The second
term, with probability 12p, is a decoupled probability dis
tribution corresponding to a standard RW. In other wor
with probability p the walk is of the coupled form just men
tioned, while with probability 12p it is a standard RW. This
model has only two parameters to be fitted: 1<g<2 and
0<p<1. In Fig. 4 we show the same case as in Fig. 3,
with this new distribution. The agreement with chromosom
II of S.c.is satisfactory up to the deviation due to finite si
effects in the sequence.

We see that the evolution ofF2(s) can be well repro-
duced by the MSD of this noisy LW, up to the transition

FIG. 3. Shown in a log102 log10 plot are^r2(s)& ~full line! of the
simulated LW@Eq. ~2!#, with g51.537, andF2(s) of chromosome
II ~dashed line!. Note the deviation at middle and short distance
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the linear regime, which occurs ats;104. We can further
ask if this transition can also be understood in terms o
more elaborate RW analog, which in turn could provide
better understanding of its origin. In the following we sho
that it is enough to include the fact that there exists a cu
L for the maximum possible step size. The cutoffL is nec-
essary, since in this model the maximum step length can
be longer than the size of the sequence, i.e.,L,Lmax. This
is achieved with the model

c~r ,s!5H pc@r 212g2L212g# d~r 2s! for 2<s<L

~12p! d~r 2s! for s51

0 otherwise.
~5!

Herec is a factor that ensures the normalization

E
2

L

dr@r 212g2L212g#51/c.

In other words, at each~renormalized! step of this analogous
walk, with probability p the displacement corresponds to
LW and with probability 12p to a standard random walk.

Let us now define the marginal distributions

R~r ![(
s51

`

c~r ,s!. ~6!

Now, due to the cutoff, the variance of each single steps2,

s25E
0

`

r 2R~r !dr,

and the mean value of the renormalized step^s&,

FIG. 4. Same as Fig. 3, using Eq.~5!, for chromosomeII . The
analogous noisy Le´vy walk ~full line! has the parametersg
51.758 andp50.02.
a
a

ff

ot

^s&5(
s51

`

sS~s!,

are finite for any value 0,g. Therefore, at long distances th
diffusive behavior

^r2~s!&5s2s/^s& ~7!

is to be expected. The factors2/^s& can be obtained by mea
suring the prefactor in the long-s linear regime ofF2(s). The

FIG. 5. Same as Fig. 3, using Eq.~5!, for chromosomeII . The
analogous noisy Le´vy walk ~full line! has the parametersg
51.537,L55381 (Lmax/L5150), andp50.035.

TABLE I. The 16 chromosomes ofS.c.are shown. The columns
display the lengthLmax of the DNA sequence, the exponent in th
proposed power-law formF2(s);s32g @see Eq.~3!#, the exponent
g, the maximum step size of the LW analogL, the ratioLmax/L,
and the fraction of LW,p.

Sequence Lmax 32g g L Lmax/L p

chr I 226646 1.534 1.466 9065 25 0.035
chr II 807188 1.463 1.537 5381 150 0.03
chr III 315341 1.455 1.545 26278 12 0.04
chr IV 1531974 1.504 1.496 5106 300 0.04
chr V 574393 1.495 1.505 6660 230 0.03
chr VI 270149 1.516 1.484 2785 550 0.04
chr VII 1090935 1.496 1.504 7272 150 0.05
chr VIII 562638 1.474 1.526 3750 150 0.03
chr IX 439885 1.496 1.504 1760 250 0.03
chr X 745442 1.467 1.533 8282 90 0.03
chr XI 666448 1.485 1.515 2897 230 0.03
chr XII 1066141 1.496 1.504 6663 160 0.03
chr XIII 924430 1.477 1.523 3555 260 0.03
chr XIV 784328 1.492 1.508 3826 205 0.03
chr XV 1091282 1.473 1.527 3637 300 0.03
chr XVI 948061 1.484 1.516 2370 400 0.03

average 752830 1.488 1.512 6205 216 0.0
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exponentg is obtained by measuring the slope of the log-l
plots of F2(s) in the ~now transitory! superdiffusive regime.

In Fig. 5 we show the resultinĝr2(s)& compared with
F2(s) for chromosomeII . In this way we obtained the fitted
parametersg, L, andp shown in Table I.

In Figs. 6 and 7 we show a simulation of the noisy Le´vy
walk defined by Eq.~5!. It is a walk with the same param
eters as for chromosomeII . Compare with Fig. 1.

In this work we presented a RW analog of DNA s
quences, as exemplified by the chromosomes of the orga
S.c.We found that this two-dimensional walk can be mo
eled or simulated as a noisy Le´vy walk, as long as one fo
cuses on the MSD and on the resulting pattern of the vis
points. The resemblance of this modified LW to the DN
walk of theS.c.is apparent. Note that the main proportion
the analog is noise~standard RW!, while the LW component
amounts to only 4%. The main parameter of the LW is
exponentg of the step-size distribution~2!. For all chromo-

FIG. 6. Noisy Lévy walk analog of the DNA walk correspond
ing to chromosomeII of S.c.Compare with Fig. 1.

FIG. 7. Amplification of Fig. 6.
sm
-

d

e

somes it is 1,g,2 with a mean valuê g&51.5160.02.
This leads to asuperdiffusiveMSD ^r2(s)&;s32^g&5s1.49

@see Eq.~3!#. The resulting pattern is a random fractal, who
fractal dimension cannot be easily related theoretically tog.
This finding raises the question about why a simple L
model behaves so similarly to a DNA sequence, both qu
tatively and quantitatively. If there is an underlying conce
tual reason for this analogy a different pathway in the ma
ematical study of DNA sequences could be opened.

Recently, our attention was directed to the works of W
and co-workers@16,17#. As in the previously cited works o
Stanleyet al., these authors consider a one-dimensional R
mapping, while we are introducing here a two-dimensio
RW mapping. A second difference is that they develop
‘‘dynamical’’ ~deterministic! method that mimics an
a-stable Lévy process with 1,a,2. The generator of the
deterministic evolution is a nonlinear map belonging to
class of maps recently tailored to mimic the process of w
chaos responsible for the birth of anomalous diffusion. A
similar conceptual idea, these authors consider this pro
to be superposed to another random one and to bed-function
correlated. They call this prescription to generate statist
sequences the copy mistake map~CMM!. On the contrary, in
our model we consider no deterministic dynamics at all,
the superposition of a Le´vy walk, responsible for the emer
gence of correlations, with a standard RW~i.e., a random
noise as in the CMM model!. In the CMM model the corre-
lation effect of the deterministic dynamics is canceled on
short-range scale, but shows up in the long-range one. In
model this effect also appears, as one can see from a c
parison of Fig. 3 with Fig. 4 or 5. Both models cannot
quantitatively compared since they are essentially differe
However, besides this difference, there remains the con
tual similarity of describing intronless~coding! and intron-
containing~noncoding! sequences in a unified way, interpre
ing the DNA sequences as the superposition of t
processes, one responsible for the long-ranged correlat
and the other essentially a noise. The latter can be interpr
as uncorrelated random mutations that destroy short-ra
correlations. In fact, in real DNA sequences no large patc
of consecutive sites~straight displacements in the RW ma
ping! are observed.

We acknowledge fruitful discussions with Carlo Brusch
P.A.A. gratefully acknowledges partial support of the De
sche Forschungsgemeinschaft~Grant No. SFB 428! and the
kind hospitality of Theoretische Polymerphysik at Freibu
University.

APPENDIX

The so-called Le´vy walk model was studied by Blumen
Klafter, and Zumofen~BKZ! @7,11,12#. While in a Lévy
flight @5,7,13,14# the single-step displacement of the walk
has a divergent variance and therefore the mean square
placement is not defined~and, strictly speaking, is also infi
nite! in the LW, this trouble is solved by introducing a sp
tiotemporal coupling. The LW is defined as a continuou
time random walk with a coupled single-step displacem
and waiting time between the steps of the form

c~r ,t !; r 212g d~r 2tn!. ~A1!
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The model has two parametersg andn. For 0,g,2 the
variance of each single step is infinite. On the other hand,
d function penalizes large steps by requiring longer times
them. The resulting MSD was computed by BKZ. In term
of

m[g11

and forg.1 andn.1/2 it is
S.

R.

on

J

e
r ^r2~ t !&;H t2n if 1 ,nm,2

t22nm12n if 2 ,nm,112n

t if 1 12n,nm.

~A2!

Then our noisy LW analog takesn51 and we view the DNA
walk as a LW in which the waiting time between consecut
displacementst is given by the number of stepss required to
reach the distancer (s).
ett.
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